Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500148

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern (VOC) and its sub-lineages (including BA.2, BA.4/5, BA.2.12.1) contain spike mutations that confer high level resistance to neutralizing antibodies. The NVX-CoV2373 vaccine, a protein nanoparticle vaccine, has value in countries with constrained cold-chain requirements. Here we report neutralizing titers following two or three doses of NVX-CoV2373. We show that after two doses, Omicron sub-lineages BA.1 and BA.4 were resistant to neutralization by 72% (21/29) and 59% (17/29) of samples. However, after a third dose of NVX-CoV2373, we observed high titers against Omicron BA.1 (GMT: 1,197) and BA.4 (GMT: 582), with responses similar in magnitude to those triggered by three doses of an mRNA vaccine. These data are of particular relevance as BA.4 is emerging to become the dominant strain in many locations, and highlight the potential utility of the NVX-CoV2373 vaccine as a booster in resource-limited environments.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.08.487674

ABSTRACT

NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated subjects made CD4+ T cell responses after one and two doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN{gamma} production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper cells (cTFH) and TH1 cells (IFN{gamma}, TNF, and IL-2) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2 neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 which utilizes Matrix-M adjuvant.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.05.442782

ABSTRACT

The 2019 outbreak of a severe respiratory disease caused by an emerging coronavirus, SARS-CoV-2, has spread globally with high morbidity and mortality. Co-circulating seasonal influenza has greatly diminished recently, but expected to return with novel strains emerging, thus requiring annual strain adjustments. We have developed a recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV) produced using an established recombinant insect cell expression system to produce nanoparticles. Influenza qNIV adjuvanted with Matrix-M was well-tolerated and induced robust antibody and cellular responses, notably against both homologous and drifted A/H3N2 viruses in Phase 1, 2, and 3 trials. We also developed a full-length SARS-CoV-2 spike protein vaccine which is stable in the prefusion conformation (NVX-CoV2373) using the same platform technology. In phase 3 clinical trials, NVX-CoV2373 is highly immunogenic and protective against the prototype strain and B.1.1.7 variant. Here we describe the immunogenicity and efficacy of a combination quadrivalent seasonal flu and COVID-19 vaccine (qNIV/CoV2373) in ferret and hamster models. The combination qNIV/CoV2373 vaccine produces high titer influenza hemagglutination inhibiting (HAI) and neutralizing antibodies against influenza A and B strains. The combination vaccine also elicited antibodies that block SARS-CoV-2 spike protein binding to the human angiotensin converting enzyme-2 (hACE2) receptor. Significantly, hamsters immunized with qNIV/CoV2373 vaccine and challenged with SARS-CoV-2 were protected against weight loss and were free of replicating SARS-CoV-2 in the upper and lower respiratory tract with no evidence of viral pneumonia. This study supports evaluation of qNIV/CoV2373 combination vaccine as a preventive measure for seasonal influenza and CoVID-19. Highlights Combination qNIV/CoV2373 vaccine induced protective hemagglutination inhibition (HAI) responses to seasonal influenza A and B unchanged when formulated with recombinant spike. Combination qNIV/CoV2373 vaccine maintained clinical and virologic protection against experimental challenge with SARS-CoV-2. Combination qNIV/CoV2373 vaccine showed no clinical or histological sign of enhanced disease following experimental challenge with SARS-CoV-2. Combination qNIV/CoV2373 vaccine induced antibodies against SARS-CoV-2 neutralizing epitopes common between US-WA and B.1.352 variant.


Subject(s)
Pneumonia, Viral , COVID-19 , Respiratory Tract Infections
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3821080

ABSTRACT

Recently approved vaccines have shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, and how boosting alters immunity to wildtype and newly emerging strains, remains incompletely understood. Here we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a one or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had minimal effects, boosting significantly altered the humoral response, driving unique vaccine-induced antibody fingerprints. Differences in antibody effector functions and neutralization were associated with protection in the upper and lower respiratory tract, pointing to compartment-specific determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies targeting emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.Funding: This work was funded by Operation Warp Speed. We thank Colin Mann and Kathryn Hastie for production of Spike antigens. We thank Nancy Zimmerman, Mark and Lisa Schwartz, an anonymous donor (financial support), Terry and Susan Ragon, and the SAMANA Kay MGH Research Scholars award for their support. We acknowledge support from the Ragon Institute of MGH, MIT and Harvard, the Massachusetts Consortium on Pathogen Readiness (Mass CPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), National Science Foundation Graduate Research Fellowship Grant No. #1745302, the Gates foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), and the Musk Foundation.Conflict of Interest: NP, MGX, JHT, BZ, SM, AMG, MJM, ADP, GG, GS, and LE are current or past employees of Novavax, Inc. and have stock options in the company. GA is the founder of Serom Yx Systems, Inc. AZ is a current employee of Moderna, Inc. but conducted this work before employment.Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. YG, RC, MJG, CA, KMP, CL, DY, KB, MEM, JL, DM, CM, SS, FA, FK, EOS, DL, and MBF declare no competing interest.Ethical Approval: The work was conducted in accordance with a protocol approved by Texas Biomed’s Institutional Animal Care and Use Committee. All subjects signed informed consent and safety oversight was monitored by a data monitoring board.


Subject(s)
Myotonic Dystrophy , Adenomatous Polyposis Coli
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.05.429759

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-200342.v1

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256735

ABSTRACT

There is an urgent need to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) that leads to COVID-19 and respiratory failure. Our study is to discover differentially expressed genes (DEGs) and biological signaling pathways by using a bioinformatics approach to elucidate their potential pathogenesis. The gene expression profiles of the GSE150819 datasets were originally produced using an Illumina NextSeq 500 (Homo sapiens). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) were utilized to identify functional categories and significant pathways. KEGG and GO results suggested that the Cytokine-cytokine receptor interaction, P53 signaling pathway, and Apoptosis are the main signaling pathways in SARS-CoV-2 infected human bronchial organoids (hBOs). Furthermore, NFKBIA, C3, and CCL20 may be key genes in SARS-CoV-2 infected hBOs. Therefore, our study provides further insights into the therapy of COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-39239.v1

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd immunity to control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length spike (S) protein, stabilized in the prefusion conformation. Purified NVX-CoV2373 S form 27.2 nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice and baboons, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicits high titer anti-S IgG that is associated with blockade of hACE2 receptor binding, virus neutralization, and protection against SARS-CoV-2 challenge in mice with no evidence of vaccine-associated enhanced respiratory disease (VAERD). NVX-CoV2373 vaccine also elicits multifunctional CD4+ and CD8+ T cells, CD4+ T follicular helper T cells (Tfh), and the generation of antigen-specific germinal center (GC) B cells in the spleen. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2327 with Matrix-M (NCT04368988).


Subject(s)
Respiratory Tract Diseases , COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.178509

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd immunity to control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length spike (S) protein, stabilized in the prefusion conformation. Purified NVX-CoV2373 S form 27.2nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice and baboons, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicits high titer anti-S IgG that is associated with blockade of hACE2 receptor binding, virus neutralization, and protection against SARS-CoV-2 challenge in mice with no evidence of vaccine-associated enhanced respiratory disease (VAERD). NVX-CoV2373 vaccine also elicits multifunctional CD4+ and CD8+ T cells, CD4+ T follicular helper T cells (Tfh), and the generation of antigen-specific germinal center (GC) B cells in the spleen. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2327 with Matrix-M (NCT04368988).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL